
Towards Automated Regression Analysis and
Management Throughout Software Life-Cycle

Ankur Gupta

and

Veena Tripathi

Model Institute of Engineering and Technology, Jammu, India

Software application performance tends to degrade over a period of time due to introduction of new features,

feature enhancements and bugs-fixes as part of the software maintenance lifecycle. Critical applications cannot

afford the performance degradation. However, teams engaged in software maintenance are not too effective in
detecting potential performance impacting issues during the test and release phases of the software engineering

process, since the run-time environments for individual customers are difficult to simulate. This challenge is

exacerbated for applications with a large installed-base. This research paper proposes the concept of Application
Baselining as a means to effectively detecting and containing software regression. It provides indication of real-time

application performance by monitoring its critical parameters over long periods of time. By keeping track of the
changes made to the application and its environment, their impact on application performance is correlated. The

changes which adversely impact the application performance are then rolled-back to mitigate their effect. Early

work towards development of such a framework is presented.

Keywords: Software maintenance, automated regression analysis, application baselining.

1. INTRODUCTION

Software maintenance for long-running products with a large installed base is a challenging propo-
sition to say the least. The primary author has had first-hand experience of being involved in the
maintenance of HP OpenView Network Node Manager1 which has an estimated installed-base of
over 15,000 instances across several product versions spanning close to three decades and spread
over all geographies. Some of the unique challenges encountered in the maintenance for such
products are:

a) Extreme Heterogeneity in terms of hardware configurations, operating systems and ver-
sions, OS patch levels, product version and patch levels, diversity in system and product
run-time environments, customer use-cases and processes. This manifests in diverse perfor-
mance profiles of the same code-base at different customer installations.

b) Extreme Heterogeneity in terms of hardware configurations, operating systems and ver-
sions, OS patch levels, product version and patch levels, diversity in system and product
run-time environments, customer use-cases and processes. This manifests in diverse perfor-
mance profiles of the same code-base at different customer installations.

c) Root-Cause Analysis becomes complicated in such environments as correlating code-changes
to observed performance variations in specific instances of the product is non-trivial and re-
quires significant manual analysis and intervention.

d) Ensuring Effectiveness of Maintenance Process becomes challenging as every patch
release can potentially impact performance at specific product instances while having little
or no performance impact at others. Negative impact of a released patch can involve patch
recalls or releasing emergency patch-fixes or issuing workarounds which are expensive.

1http://www8.hp.com/in/en/software-solutions/network-node-manager-i-network-management-software

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



· 207

e) Cascade Effect in such maintenance environments is pronounced. Fixing a performance
issue in one product version can potentially result in product fixes to be undertaken across
the product family to ensure consistency. Even performance fixes in specific modules can
cause significant changes to occur in other dependent modules complicating the maintenance
process.

f) Customer Satisfaction can be hit if the maintenance process fails to adequately address
performance issues. Customers expect better performance and functionality when new product
patches are installed.

Run-time performance issues will still not be detected until the customer reports them in. After
the defect is reported correlating the performance degradation with the potentially large number
of defect fixes is again time consuming for the maintenance teams.
What is needed is a mechanism to automatically quantify the performance impact of released
software updates (patches) in specific customer environments, correlate the performance impact
with specific fixes to the code-base and notify the maintenance team if the performance impact is
severe enough to impact customer experience. This research papers presents early work towards
the development of a framework which tracks real-time software regression and helps alleviate
the pain points in software maintenance as discussed above.
The proposed framework relies on maintaining detailed performance profiles or baselines for the
different application processes which comprise the installed product. Any significant variations
against the observed performance profiles as a result of installation of new software updates are
reported back to the maintenance team with a detailed report on the modules in which variations
are observed, degree of variation and the list of defect fixes in the related or dependent modules.
This aids in quick detection, root-cause analysis and potentially quick turnaround time to fix and
release regression causing software updates.

2. BACKGROUND AND RELATED WORK

A software application comprises of multiple processes, directories/files and each process has a
particular behavior pattern with respect to the following system parameters:

—CPU Utilization trends.

—Memory Utilization trends.

—Hard Disk Utilization trends.

—Open file descriptors/files manipulated.

—Network Connections Established.

—Traffic generated.

Over a period of time we observe a baseline 2 (normal) behavior for a process and hence
cumulatively for the entire application in a particular deployment (run-time) environment. Dif-
ferent run-time environments will have a corresponding baseline behavior for the application in
question which depends on the use-case scenario of the application, hardware resources on the
system and other environmental factors (other active applications on the system), etc. Thus, the
same application can have a completely different performance profile on different systems and in
different deployment scenarios. For applications with a large deployment base (large number of
customers), it becomes difficult for the software maintenance teams to deal with following issues:

2http://www.cisco.com/c/en/us/support/docs/availability/high-availability/15112-HAS-baseline.htmltext

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



208 ·

X Stimulate the exact customer environment to understand performance/ regression issues in
the context of the customer.

X Manage regression issues in the context of the customer.

X Understand the impact of bug-fixes, feature enhancements on application performance in
varied deployment environments.

X Provide customer context-specific maintenance and recommendations to prevent degradation
in application performance.

X Maintain quality and performance over long periods of time.

To solve customer-reported issues maintenance teams need to retrieve a great deal of customer
information which requires several rounds of communication with the customer. This is followed
by the simulation of the customer environment and reproduction of the defect as observed. Thus,
eliciting the complete information about the customer environment and reproduction of the de-
fect are time-consuming activities which impact the turnaround time for the resolution of the
customer issue.

Figure 1. Application update/maintenance process in test environment

Figure1 Shows flow-chart for the application update/maintenance process in the test phases
illustrating several steps and validations involved. In the Planning and Assessment phase of
testing the new patch any regression in application performance is compared and recorded. If
there is no regression noticed, the patch is flagged as successful and processed for release to
the customers. However, if regression is noticed the development team may work to fix the
issue before release of the patch. This process potentially involves several iterations. Typically,
after the patch is available internally the maintenance team tests the patch on a production
environment which is designed to mimic actual customer environment. The patch is typically
revalidated and then released externally. The challenge with this approach is that the diversity
of customer environments cannot be reproduced successfully and hence all potential problems
cannot be screened beforehand.

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



· 209

2.1 Application Baselining

A Baseline 3 is a benchmark that is used as a foundation for measuring or comparing current
and past values. Some real-word examples of baselining include network performance manage-
ment, scope baseline for quality planning, project management and medical science etc. Network
Baselining McKellar [1996] is a commonly used technique for analyzing computer network per-
formance. It involves measuring and rating the performance of a network in real-time. Once
a network baseline has been established, it is then used to determine both present and future
network upgrade needs as well as assist in making changes to ensure that the current network is
optimized for peak performance.

Baselining a software application is required to identify key performance indicators in terms of
the quantum of system resource usage and their temporal relationships. Application Baselining
for determining run-time software regression is novel and a unique contribution of this paper.
Through application baselining the installed application image (static) and resource usage and
behavior (dynamic) of the application are monitored. The static profile includes the number of
files installed, their checksum and size in bytes etc. Changes in the static profile of the installed
application are useful in correlating with performance issues in specific software updates. The
dynamic profile of the application includes dynamic resource usage such as CPU, Memory and
I/O as a function of time. Thus, by matching run-time performance with past performance profile
for the same time period trends either regressive or progressive can be determined and corrective
interventions if any can be initiated.

The framework thus employs application performance baselining to determine performance
regression as an outcome of software maintenance processes throughout the product lifecycle.

2.2 Related Work

In Zheng et al. [2014] propose an automatic framework for detection and characterization of
performance degradation in software systems and have validated the framework for web-servers
specifically. The proposed theoretical model focuses on determining software aging or degradation
in terms of response time, QoS and resource utilization. However, this model does not account
for performance degradation as a result of intermediate software maintenance updates, relying
on a black-box approach. In contrast, the proposed scheme uses a white-box approach to corre-
late software updates to observed performance degradation in diverse customer environments at
considerable scale.
Cito et al. [2014] identify root of performance degradation in web-based applications using
Changepoint Analysis. They have created a simulation model based on the taxonomy of root
causes in server performance degradation by continually collecting data in order to observe and
track changes in desired metrics, e.g., service response time. This enables detecting anomalies,
identifying patterns, ensuring service reliability, measuring performance changes after new soft-
ware releases, or discovering performance degradation. However, the proposed framework uses
a single point of reference for web-servers and is not applicable to software applications which
operate in diverse real-time customer environments as 4.
In Jin et al. [2012] classify performance bugs in five real-world software application suites and
develop a framework to classify such defects. This aids development and maintenance teams in
detecting such defects early, fixing them or even avoiding them in future. However, undertaking
such a comprehensive study is not feasible for all applications. Secondly, given the complex-
ity involved in maintenance of large applications by geographically distributed teams, avoiding
performance bugs altogether remains unrealistic. Having maintenance teams receive real-time
feedback at run-time based on previously benchmarked performance baselines is practical and
allows for quick correlation between specific software updates and degradation in specific appli-
cation modules/processes.

3http://www.cisco.com/c/en/us/support/docs/availability/high-availability/15112-HAS-baseline.html
4http://www8.hp.com/in/en/software-solutions/network-node-manager-i-network-management-software

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



210 ·

The Walker et al. [1998] describes a method and computer product for facilitating regression
testing during the development and other life cycle phases of a software application comprised
of transactions. The test data is in a robust functional description of the transaction such that
physical modifications to the transaction during software development preserve the viability of
the test data for execution in the modified transaction. However, this strategy is manual in
nature and implemented before the product is released. Thus, regression analysis is performed in
the pre-release test environment and not in the actual run-time environment during the life-cycle
of the deployed software.
In Gupta [2012] authors describe a collaborative software maintenance framework which auto-
matically builds expert knowledge aiding in maintenance of complex software and claim that such
a system would contain regression by leveraging the knowledge of experts in the team. However,
the effectiveness of the framework is not tested in real-world scenarios.
The Lane [2000] describes a method for regression and verification of hardware, network, and/or
software technology platforms to deliver acceptance status details. This method variously pre-
pares instructions and components to support unique business customer environments and man-
ages the regression verification of these environments. Errors, deviations, and recommendations
for improvement, with full regression capabilities, are reported to the business user customer.
The drawback of this strategy is also the lack of real-time monitoring of the software application
and the hardware and operating environment.
The proposed framework is based on the Indian patent application Gupta and Shamim [] filed
by the authors. It alleviates the shortcomings mentioned above by ensuring that the application
vendor can better track performance of the deployed application in the run-time environment
for an individual customer (s) spanning over different time periods of software development and
up-gradation. Thus, the proposed invention ensures continuous and comprehensive performance
monitoring for real-time regression analysis.

3. SYSTEM MODEL

This research paper proposes a framework for creating a baseline which provides an indication of
the performance of any software application over its entire lifecycle. This is done through real-
time monitoring of the behavioral pattern of its critical parameters and storing them for future
reference. Comparison with existing performance baselines can be used to detect and manage
regression in the software application introduced due to changes in the application environment or
as a result of the software maintenance process. By keeping an audit trail of the changes made to
the application and its environment, their impact on application performance can be determined.
It also provides an indication of the quality and effectiveness of the software maintenance process
followed by the application development vendor. Through the proposed invention, the application
vendor can better track performance of the deployed application in the run-time environment for
an individual customer. Insights gained from the proposed framework help the application vendor
in making informed decisions to improve quality of software maintenance process and manage
changes which impact application performance adversely.
Figure2 presents the overall schematic of the proposed application baselining framework which
consists of additional monitoring modules installed at the customer location, which provide real-
time monitoring capabilities for the installed application. Any deviations from the known normal
performance parameters pertaining to the application are intimated through events to the central
server maintained by the application vendor. Based on the quantum of variation the events are
categorized as critical, major, minor and appropriate automated actions can be initiated in case
the application performance is impacted due to recent software maintenance updates.

3.1 Server Side Components

3.1.1 Listener:. The listener is responsible for receiving all events from the customer-side
baseline agent. It forwards all received events to the action manager for initiating an appropriate
response if required.

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



· 211

3.1.2 Action Manager:. The action manager is responsible for initiating corrective actions in
case performance degradation is detected. It involves roll back of the patch incase application
performance degradation is detected and classified at a major or critical level subsequent to
patch updates. The classification of events is based upon the degree of variation observed from
the stored normal baselines for the application module(s) in question and based on a set of pre-
defined rules. It also raises a trouble ticket for the event and notifying the maintenance team
and the system administrator (customer-side) with relevant details. The patch rollback process
can be fully automated or require the intervention of the system administrator.

3.1.3 Baseline Database:. The baseline database holds a repository of previous normal base-
line values for the application in the customers run-time environment. These baselines are mea-
sured against key application performance indicators like CPU usage, memory utilization, network
performance etc. which are unique to the customer environment and can be expected to vary over
time. Performance parameters are in turn dependent upon the hardware configuration deployed
by the customer, the operating system, the operating system patch level, the load on the system,
the size of the application database, the duration for which the application is active, the appli-
cation patch level and configuration parameters for both the system and the application. The
baseline values help in correlating observed application performance with changes in the system
environment and application updates.

3.1.4 Patch DB:. The patch database is the repository of all production patches released by
the maintenance team for different application versions. Whenever it receives a new patch for
production deployment release from the maintenance team, it notifies the action manager about
the new release.

3.2 Customer Side Components

3.2.1 Listener (client):. Should have root privileges and is responsible for installing and
uninstalling patch updates received from the server side Action Manager after approval from the
designated human administrator.

3.2.2 Local baseline Store:. This is a repository of previous normal baseline values for the
client runtime environment for pre and post patch update application performance analysis. The
baseline values need to be updated since normal behavior for an application can change over its
lifecycle depending upon application upgrades, new components added, feature enhancements
and modifications. Baselines for varying time durations are part of the store. Performance
measurements over one month for which no action is initiated by the human managers or by
the server side action manager are taken to be new baseline values, since these would indicate
expected application behavior and performance.

3.2.3 Baseline Agent. This agent is responsible for measuring current Application perfor-
mance and comparing with previous baseline values from the local baseline store and communi-
cating the values to the listener at the server end. The performance counters used by the baseline
agent for an application are:

—Current CPU Utilization of the Application (% Processor Time counter).

—Current CPU Utilization of the Application (% Processor Time counter).

—Current Memory Utilization of the Application (Available Bytes and Pages/sec counters).

—Current Network Utilization of the Application (Bytes Received, Bytes Sent, Connections
Established, Datagrams Received, Datagrams Sent counters).

—Current Disk Utilization of the Application (Disk Reads/sec, Current Disk Queue Length,

In addition, the baseline agent also keeps track of the static installed image of the application in
terms of number of files installed, their associated checksum, new files introduced, configuration

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



212 ·

Figure 2. Schematic of the Proposed Framework

parameters changed so that the changes to the application and its environment can be correlated
to performance.

3.3 Sequence of Operations

The Sequence of Operations of the proposed framework is described below:

(1) Software and monitoring framework installation at customer location. This is the setup phase
in which the customer installs the software from the vendor. As part of the installation
package the monitoring framework including the Baseline Agent (BA) and associated files
also gets installed.

(2) Establishing connection between Baseline Agent (customer) and Listener (Server side). The
baseline agent is hardcoded with the address of the Listener so that it can establish a pre-
liminary connection after installation.

(3) Action manager checks for any available patches to ensure customer software is concurrent
with latest patch levels. During the first connection, the listener on the server side checks
whether the latest patches are installed at the customer-site based on the version information
provided by the BA. If the latest patches are not found, the action manager pushes the patches
to the customer site, where they are installed automatically and the human administrator at
the customer location notified.

(4) Baseline agent begins run-time monitoring of application which include

—monitoring all processes and sub-processes
—monitoring performance parameters cpu, disk, memory, network etc.

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



· 213

—monitoring all the installed files, directories and sub-directories installed as part of the
application package

—monitoring system parameters like memory, cpu, disk and other vital parameters
content...

(5) Creation of first performance baselines (duration: startup, 24 hours, 1 week,1 month, 1year)
for the running software for each process and sub-process.

(6) Run-time variance measurement of actual performance vs. baseline performance.

(7) If variance is detected, BA generates baseline threshold events.

(8) Listener receives and forwards to action manager after classifying events as normal, minor,
major and critical based on

(9) Action manager logs event in baseline DB, checks patch DB for the customer, executes rules,
raises trouble-ticket and may affect a rollback at the customer-site to previous known stable
patch level.

(10) Rollback event received and executed by the listener at customer-site, notification to customer-
site admin and application rolled back and restarted.

(11) Event logged in customer-site audit trail which keeps record of all changes to environment
and application.

Table-1 list out the important fields in the baseline event as generate by client baseline agent.

Field Description

x-name Name of Application

date Date of Event

time Time the Event occurred

time-period Time duration for which baseline is violated (statup, 5 min,1 hour,24

hours etc.)

hw-desc Description of the Hardware

sys-param-var List including OS, patch-level and environment variables

x-type Type of Event

x-category Event Category

x-desc Event Description

x-ctx Event-dependent context information

x-plevel Current Application Patch Level

x-pid Application sub-process ID for which baseline violation observed

x-cpu-load Current measured Application CPU Utilization %

x-mem-load Current measured Application Memory Utilization %

x-disk-load Current measured Application Disk Utilization %

x-r-bytes Current measured Application Network Utilization (bytes
sent/received per second).

x-var Variable list with ¡name, value¿ pairs for the baseline parameters

e.g.<cpu, 90>, <mem, 86>, <disk, 67> etc. the number of parame-

ters can be variable depending upon the type of event.

Table I: Event details sent by the baseline agent to the server-side listener

The baseline agent is capable of measuring several performance counters based on utilization
of CPU, Memory, Network and Disk besides system and environmental parameters. Two listener
modules each at the vendor and customer location for receiving messages from either side and
interacting with the respective Action Manager (server side) and Baseline Agent (customer side).
All events at the customer side are recorded at the audit trail database repository and notified
to the human administrator. Similarly all baseline violation events received at the server side
are recorded in the defect database repository and notified to the maintenance team for further
analysis and rectification.

The proposed framework thus addresses the following issues:

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



214 ·

—Enable automated collection of real-time information from the customer environment (system
configuration, OS version and patch levels, application version and patch levels, system pa-
rameters etc.) reducing the time to collect run-time information for the software maintenance
team.

—The run-time monitoring of the deployed application and creation of performance baselines is
based on a host of system, environment and application-specific parameters, creating a holistic
correlation between software performance and its environment.

—Continuous updating of performance baselines based on the performance evolution of the ap-
plication to reflect new normal states of performance.

—Automated context-specific analysis of application performance by comparing current perfor-
mance levels with the known normal performance baseline for the application.

—Tracking of system and application updates and establishing their correlation with application
performance.

—Initiate automated corrective action at the customer-site to mitigate any adverse impact on
application performance due to software upgrades.

—Improve effectiveness of the software maintenance process.

—Helps to improve Quality-of-Service provided to individual customers even with a large customer-
base.

4. CONCLUSION AND FUTURE WORK

This research paper presents a novel framework based on application performance baselining to
effectively detect and manage regression in s performance throughout its lifecycle and aid the
software maintenance team in effectively dealing with run-time regression. The framework also
enables in quick detection of performance issues in the customer run-time environments providing
a correlation between application performance degradation and applied software updates. This
helps the software maintenance team an aid in effective root-cause analysis leading to potentially
quicker resolution of customer issues and improved quality-of-service in terms of software main-
tenance. The framework therefore addresses a valid real-world issue which typically affects all
software maintenance teams involved in maintaining legacy products with a large installed base
spanning several generation and versions.
Future work needs to focus on establishing specific scenarios for updating the performance base-
lines. Defining application performance parameters for diverse run-time environments remains
challenging and may vary over periods of time as the software evolves. Hence, a fool-proof mecha-
nism to adopt new baselines may require a combination of historical analysis coupled with human
intervention to define acceptable performance bounds for the application for subsequent software
updates. Testing in a real-world scenario is a must for establishing the effectiveness of the pro-
posed framework and will require customer buy-in to implement run-time monitoring agents to
monitor application performance. Also, some further validation on the frequency of application
performance monitoring shall also be required. Frequent monitoring shall consume additional
compute resources and keeping these to a required minimum shall also be a key requirement for
the successful implementation of the proposed framework.

References

Cito, J., Suljoti, D., Leitner, P., and Dustdar, S. 2014. Identifying root causes of web
performance degradation using changepoint analysis. Series Lecture Notes in Computer
Science Vol.8541, pp.181–199.

Gupta, A. 2012. Practitioner-oriented collaborative and cooperative software maintenance. In-
ternational Journal of Computer Science: Theory, Technology and Applications Vol.1, No.1.

Gupta, A. and Shamim, S. Method of regression analysis for software maintenance throughout
its lifecycle. Patent Application 3359/DEL/2013.

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



· 215

Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. 2012. Understanding and detecting real-
world performance bugs. In 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp.77–88.

Lane, H. 2000. Technology regression and verification acceptance method. US Patent No:
6,269,457.

McKellar, B. 1996. Network baselining, part i: Understanding the past to predict the future.
WG Sales.

Walker, J. L., Diab, S., and Slovik, A. 1998. Method for defining durable data for regression
testing. US Patent No: 6,061,643.

Zheng, P., Qi, Y., Zhou, Y., Chen, P., Zhan, J., and Lyu, M. 2014. An automatic
framework for detecting and characterizing performance degradation of software systems.
IEEE Transactions on Reliability Vol.63, No.4.

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.



216 ·
Dr. Ankur Gupta is the Joint Director at the Model Istitute of Engineering and
Technology, Jammu, besides being a Professor at the Dept. of Computer Science and
Engineering. Prior to joining MIET, he worked as a Team Leader at Hewlett-Packard,
India Software Operations, Bangalore for 7 years. He has a wide range of software design
and development experience in e-commerce and network management domains. He has
11 patents pending at the US and Indian Patents and Trademarks Office and over 40
published research papers in international journals/conferences. Prof. Gupta pursued his
engineering education at BITS, Pilani from where he has a MS, Software Systems and
B.E (Hons), Computer Science degrees. He completed his PhD from National Institute of
Technology, India. His research interests are in cloud computing, P2P networks, network
management and software engineering. He is the founding Managing Editor of the Inter-
national Journal of Next-Generation Computing (IJNGC) and a recipient of the AICTE
Career Award for Young Teachers. He is a senior member of the ACM, senior member
IEEE and life member of the CSI.

Ms Veena Tripathi is an Assistant Professor in Model Institute of Engineering and Tech-
nology, Jammu (India). She has done her MS in Software Engineering from Dipartimento
di Informatica e Telecomunicazioni University Of Trento, Italy(www.dit.unitn.it). She has
completed her Internship of MS in the field of Software Testing under guidance of Prof.
Paollo Tonella and Angelo Susi in Computer Science Research center:FONDAZIONE
BRUNO KESSLER Trento, Italy(www.fbk.eu). She has more than 8 years of teaching
Experience. She has Worked On YAKSHA project (for online preparation of Medical En-
trance Examination). She has worked on many research projects during her MS program.
She has the membership of International Association of Engineers (IAENG). Her research
interests are in Software Testing, Reverse Engineering, Software Maintenance and Cloud
Computing.

International Journal of Next-Generation Computing, Vol. 6, No. 3, November 2015.


